A Different Traditional Approach for Automatic Comparative Machine Learning in Multimodality Covid-19 Severity Recognition

Authors

  • Mohammadreza Saraei * Biomedical Engineering Faculty, Seraj Higher Education Institute, Tabriz, Iran
  • Saba Rahmani Biomedical Engineering Faculty, Seraj Higher Education Institute, Tabriz, Iran
  • Saman Rajebi Assistant Professor, Electrical Engineering Faculty, Seraj Higher Education Institute, Tabriz, Iran
  • Sebelan Danishvar Research Fellow, College of Engineering, Design, and Physical Sciences, Brunel University, London, UK

DOI:

https://doi.org/10.59615/ijie.3.1.1

DOR:

https://dorl.net/dor/20.1001.1.27831906.2023.3.1.1.7

Keywords:

Machine Learning, Covid-19, Multimodality, Severity Recognition, Computer-Assisted, Classification

Abstract

In March 2020, the world health organization introduced a new infectious pandemic called “novel coronavirus disease” or “Covid-19”, origin dates back to World War II (1939) and spread from the city of Wuhan in China (2019). The severity of the outbreak affected the health of abundant folk worldwide. This bred the emergence of unimodal artificial intelligence approaches in the diagnosis of coronavirus disease but solely led to a significant percentage of false-negative results. In this paper, we combined 2500 Covid-19 multimodal data based on Early Fusion Type-I (EFT1) architecture as a severity recognition model for the classification task. We designed and implemented one-step systems of automatic comparative machine learning (AutoCML) and automatic comparative machine learning based on important feature selection (AutoIFSCML). We utilized our posed assessment method called “Descended Composite Scores Average (DCSA)”. In AutoCML, Extreme Gradient Boost (DCSA=0.998) and in AutoIFSCML, Random Forest (DCSA=0.960) demonstrated the best performance for multimodality Covid-19 severity recognition while 70% of the characteristics with high DCSA were chosen by the internal important features selection system (AutoIFS) to enter the AutoCML system. The DCSA-based designed systems can be useful in implementing fine-tuned machine learning models in medical processes by leveraging the capacities and performances of the model in all methods. As well as, ensemble learning made sounds good among evaluated traditional models in systems.

Downloads

Download data is not yet available.

References

• Abirami, R. S., & Kumar, G. S. (2022). Comparative Study Based on Analysis of Coronavirus Disease (COVID-19) Detection and Prediction Using Machine Learning Models. SN Computer Science, 3(1), 79. doi:10.1007/s42979-021-00965-2

• Aishwarya, T., & Ravi-Kumar, V. (2021). Machine learning and deep learning approaches to analyze and detect COVID-19: a review. SN Comput. Sci., 2(3), 226. doi:10.1007/s42979-021-00605-9

• Aljameel, S. S., Khan, I. U., Aslam, N., Aljabri, M., & Alsulmi, E. S. (2021). Machine learning-based model to predict the disease severity and outcome in COVID-19 patients. Hindawi Sci. Program. doi:10.1155/2021/5587188

• Arpaci, I., Huang, S., Al-Emran, M., Al-Kabi, M. N., & Peng, M. (2021). Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms. Multimed. Tools Appl., 7, 1-15. doi:10.1007/s11042-020-10340-7

• Aydin, N., & Yurdakul, G. (2020). Assessing countries’ performances against COVID-19 via WSIDEA and machine learning algorithms. Applied Soft Computing, 97, 106792. doi:10.1016/j.asoc.2020.106792

• Bhargava, A., & Bansal, A. (2021). Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review. Multimed Tools Appl., 80(13), 19931-19946.

• Blagus, R., & Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data. BMC bioinformatics, 14, 106. doi:10.1186/1471-2105-14-106

• Das, A. K., Ghosh, S., Thunder, S., Dutta, R., Agarwal, S., & Chakrabarti, A. (2021). Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. Pattern Anal Appl., 1111–1124. doi:10.1007/s10044-021-00970-4

• Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine Learning for Medical Imaging. Radiographics: a review publication of the Radiological Society of North America, 37(2), 505-515. doi:10.1148/rg.2017160130

• Gao, Y., Cai, G., Fang, W., Li, H. Y., Wang, G. Y., Chen, L., . . . Xu, S. (2020). Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat Commun, 11, 5033. doi:10.1038/s41467-020-18684-2

• Gayathri, G., & Satapathy, S. (2020). A survey on techniques for prediction of Asthma. Smart Computer Techniques and Application, 159, 751-758. doi:10.1007/ 978-981-13-9282-5_72

• Huang, S. C., Pareek, A., Seyyedi, S., Banergee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. npj Digital Medicine, 3(136). doi:10.1038/s41746-020-00341-z

• Khanday, A. M., Rabani, S. T., Khan, Q. R., Rouf, N., & Din, M. M. (2020). Machine learning based approaches for detecting COVID-19 using clinical text data. Int. J. Inf. Technol., 30, 1-9. doi:10.1007/s41870-020-00495-9

• Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., . . . Xia, J. (2020). Artificial intelligence distinguishes COVID-19 from community acquired Pneumonia on Chest CT. Radiology, 296(2), E65–E71. doi:10.1148/radiol.2020200905

• Li, Y., Yao, L., Li, J., Chen, L., Song, Y., Cai, Z., & Yang, C. (2020). Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. Medical Virology, 92(7), 903–908. doi:10.1002/jmv.25786

• Liu, F. T., Ting, K. M., & Zhou, Z. (2008). Isolation forest. 2008 Eighth IEEE International Conference on Data Mining. Pisa. doi:10.1109/ICDM.2008.17.

• MOHME. (2021). Covid-19 patients management guideline at outpatient and inpatient levels. Tehran: Ministry of Health and Medical Education.

• Moulaei, K., Shanbehzadeh, M., Mohammadi-Taghiabad, Z., & Kazemi-Arpanahi, H. (2022). Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Med. Inform. Decis. Mak., 22(2). doi:10.1186/s12911-021-01742-0

• Muhammad, L. J., Algehyne, E. A., Usman, S. S., Ahmad, A., Chakraborty, C., & Mohammed, I. A. (2021). Supervised Machine Learning Models for Prediction of COVID-19 Infection using Epidemiology Dataset. SN Computer Science, 2(1), 11.

• Nayak, J., Naik, B., Dinesh, P., Vakula, K., Rao, B. K., Ding, W., & Pelusi, D. (2021). Intelligent system for COVID-19 prognosis: a state-of-the-art survey. Nayak, J., Naik, B., Dinesh, P., Vakula, K., Rao, B. K., Ding, W., & Pelusi, D. (2021). Intelligent system for COVID-19 prognosis: a state-of-the-art survey.Applied intelligence, 1-31. doi:10.1007/s10489-020-02102-7

• NCIRD. (2021, 02 22). Symptoms of COVID-19. (Centers for Disease Control and Prevention (CDC)) Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

• Pollack, M. M. (2016). Severity of illness confusion. Pediatric critical care medicine, 17, 583. doi:10.1097/PCC.0000000000000732

• Rubin, G. D., Ryerson, C. J., Haramati, L. B., Sverzellati, N., Kanne, J. P., Raoof, S., . . . Inoue, Y. (2020). The Role of Chest Imaging in Patient Management During the COVID-19 pandemic: a multinational consensus statement from the fleischner society. Chest, 158(1), 106–116. doi:10.1016/j.chest.2020.04.003

• Singh, A. K., Kumar, A., Mahmud, M., Kaiser, M. S., & Kishore, A. (2021). COVID-19 infection detection from chest X-ray images using hybrid social group optimization and support vector classifier. Cognit. Comput., 1-13. doi:10.1007/s12559-021-09848-3

• Sujath, R., Chatterjee, J. M., & Hassanien, A. E. (2020). A machine learning forecasting model for COVID-19 pandemic in India. Stoch. Environ. Res. Risk Assess., 34, 959-972. doi:10.1007/s00477-020-01827-8

• Wang, Y., Kang, H., Liu, X., & Tong, Z. (2020). Combination of RT‐qPCR testing and clinical features for diagnosis of COVID‐19 facilitates management of SARS‐CoV‐2 outbreak. Medical Virology, 92(6), 538–539. doi:10.1002/jmv.25721

• WHO. (2021, 12 23). COVID-19: symptoms and severity. (World Health Organization (WHO)) Retrieved from https://www.who.int/westernpacific/emergencies/covid-19/information/asymptomatic-covid-19

• Xiong, Y., Ma, Y., Ruan, L., Li, D., Lu, C., & Huang, L. (2022). Comparing different machine learning techniques for predicting COVID-19 severity. Infect Dis Poverty, 11(19). doi:10.1186/s40249-022-00946-4

• Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and multiorgan response. Current Problems in Cardiology, 45(8), 100618. doi:10.1016/j.cpcardiol.2020.100618

• Zhang, R. K., Xiao, Q., Zhu, S. L., Lin, H. Y., & Tang, M. (2022). Using different machine learning models to classify patients into mild and severe cases of COVID-19 based on multivariate blood testing. Journal of medical virology, 94(1), 357-365. doi:10.1002/jmv.27352.

Downloads

Published

2023-03-13

How to Cite

Saraei, M., Rahmani, S., Rajebi, S., & Danishvar, S. (2023). A Different Traditional Approach for Automatic Comparative Machine Learning in Multimodality Covid-19 Severity Recognition. International Journal of Innovation in Engineering, 3(1), 1–12. https://doi.org/10.59615/ijie.3.1.1

Issue

Section

Original Research